Top Cleantech Events You Should Attend in 2023

Julianne Waite
January 10, 2023
Speakers from RE+ 2022's "An Increasingly Competitive Solar Landscape: Paths to Diversification" panel included Becca Glazer (AES), Adam Hinckley (Enphase Energy), Rob Threlkeld (GM), Amy Heart (Sunrun), David Ganske (DG+Design), and Meghan Gainer (DSD Renewables).

2023 is finally here and we are thrilled about the lineup of clean energy and sustainability events slated for the new year. In this article, we offer a calendar view of 10+ cleantech events plus a deeper dive into some of the events that we are most excited to attend. If you are planning to attend any of the events, please reach out to us. We’d love to connect! 

CES 2023

Las Vegas, Nevada
January 5 - 8, 2023

About CES 2023

CES® is the most influential tech event in the world — the proving ground for breakthrough technologies and global innovators. This is where the world's biggest brands do business and meet new partners, and the sharpest innovators hit the stage. 

Why DG+ is excited about CES 2023

What isn’t compelling about exploring 2400+ innovative tech exhibits of all shapes and sizes? The organizers aren’t kidding when they say CES features every aspect of the tech sector. Naturally, some of the categories we are most excited about include energy/power, smart cities, sustainability, and vehicle technology. It will be invigorating to be surrounded by so many tech companies that are determined to become part of the climate solution(s). 

In addition to an inspiring exhibit hall floor, CES also has an incredible speaker lineup that includes the likes of Carlos Tavares (Stellantis), Benson Chan (Strategy of Things), Mitch Klein (Silicon Labs), and Amira Aly (Lucid Motors).  

At DG+ we value ambition, innovation, optimization, and efficiency, and CES checks all the boxes. 

The Washington, DC Auto Show

Washington, DC
January 20 - 29, 2023
Electric Vehicles

About the DC Auto Show

The Washington, DC Auto Show® is held each January at the Walter E. Washington Convention Center and is the largest annual indoor public event in the District of Columbia. For more than 80 years, the auto show has modified its programming to accommodate the latest advances and trends in car technology. The 2022 Auto Show highlighted mobility advancements in all forms of transportation, including vehicle electrification. The 2023 show is expected to have an even more expansive display of battery-powered vehicles, sustainable buses, and new forms of all-electric mobility.

Why DG+ is excited about the DC Auto Show

This combines two of our CEO David Ganske’s favorite things in the world: 1) our nation’s capital, and 2) cars. Put those things together for almost 10 days to kick off the new year and it is a dream come true for DG. 

The 2023 show will again feature the EV Pavilion, which was introduced to the event last year in an effort to cater to the growing electric mobility market and its high-hitting demand. Visitors will get a sneak peek at what the future of mobility looks like while browsing the latest electric models. There will also be an outdoor EV ride n’ drive event where attendees can test drive an all-electric vehicle on the streets of Washington DC!


San Diego, California
February 7 - 9, 2023


DISTRIBUTECH International® is the leading annual transmission and distribution event that addresses technologies used to move electricity from the power plant through the transmission and distribution systems to the meter and inside the home or business. The conference and exhibition offer education, information, products, and services related to electricity delivery automation and control systems, energy efficiency, demand response, distributed energy resource management systems, renewable energy and EVSE interconnection, advanced metering, T&D system operation, resiliency and reliability, communications technologies, cybersecurity, sustainability, and more. 

Why DG+ is excited about DISTRIBUTECH

DISTRIBUTECH truly taps into our “nerdy-learning” core value here at DG+. The 2023 event looks unreal: 13 hand-selected, timely tracks that all speak directly to energy wonk hearts. 

In last year’s version of this piece (Top Cleantech Events You Should Attend in 2022) I broke down which track each of my colleagues would likely pick if we were to attend DISTRIBUTECH as a team. With some new tracks and some new colleagues, I thought it would be fun to do that again.

  • Kathleen is the colleague I’ve known the longest so this one was too easy: she’d opt for the DER for Flexibility and Resilience track. “Energy storage.” “Load handling.” “Microgrid integration.” “Planning.” These words are literal music to her ears. 
  • Melissa was a pretty easy mark as well: the Cyber and Physical Security track is right up her alley. Melissa is on constant alert for emerging threats and has sent me more articles about the importance of strong passwords than anyone I’ve worked with ever. 
  • Gavin was also easy to read because he’s a car guy, so the Electric Vehicles track would be his obvious choice. Though as a Chicagoan who believes smarter cities make for better places for people to live, the Smart Cities track would be a close runner-up. 
  • Now, I really thought Mel would be a shoo-in for Data Analytics. But then again, he’d probably already know a lot of what would be discussed, so it would have to be something else – Grid Modernization: real-time data applied for optimal utility situational awareness. 
  • Barbara was trickier than expected because her insatiable curiosity drives her to learn everything about everything. But the more I considered her passion for people and the planet the more Resiliency stood out: exploring how to deliver safe, reliable services to consumers in a rapidly changing landscape. 
  • For aesthetically oriented Mary, I think the Data Analytics track would be the right call because she really has a knack for making large amounts of data digestible through beautiful design. 
  • David’s choice would be…almost impossible to guess because he would literally be wringing his hands that he can’t attend them all. But if he had to choose, my money would be on the Utility Business Models and the New Energy Provider track, which explores future business models that will help utilities mitigate the energy transition.
  • As for me, I’d be in full networking mode. I’d be popping in and out of our clients’ booths in the exhibit hall taking pictures of the ones designed by the DG+ team. I’d hit up the EV Zone to learn more about how utilities can better serve the private sector as EV adoption increases, and you know I’d be at every event with food and beverages (hello Cantina Receptions and Powered by Diversity Luncheon).  

GreenBiz 23

Scottsdale, Arizona
February 14 - 16, 2023

About GreenBiz 23

GreenBiz is the premier annual event for sustainable business leaders. Today's sustainability professional is under pressure to do more, and do it faster, than ever before. GreenBiz 23 will bring together more than 1,600 sustainable business leaders to harness the knowledge of experts, peers, and new voices to help achieve net zero, advance the circular economy, elevate social justice, safeguard biodiversity, build resilient supply chains, and more.

Why DG+ is excited about GreenBiz 23

We expect GreenBiz 23 to be three incredible days chock-full of inspiring keynote speeches from the likes of Cynthia Muffuh (UN Global Compact) and Patrick Flynn (Salesforce) and informative breakout sessions. The six thematic tracks are Circular Value Chains, Engaging Your Audience, Finance & ESG, Leading Change, Net Zero Everything, and Supply Chain Resilience. 

This event is known for fostering a deep sense of community among like-minded attendees who share an enthusiasm and passion for sustainability.

Solar + Wind Finance & Investment Summit

Phoenix, Arizona
March 13 - 15, 2023

About Solar + Wind Finance & Investment Summit

Infocast’s unified Solar + Wind Finance & Investment Summit in 2022 gathered an unprecedented number of leading industry players to network, make deals, and get fully briefed on the renewables markets. This exceptional event is back March 13-15, 2023.

Why DG+ is excited about the Solar + Wind Finance & Investment Summit

The passage of the Inflation Reduction Act (IRA), which has brought about supercharged tax credits and long-term policy certainty, makes this year’s event extra intriguing. Anyone paying the slightest bit of attention knows that the future is brighter than ever for renewable energy investment, but capitalizing on these novel opportunities requires a keen understanding of how to navigate these waters. This event boasts an impressive line-up of featured speakers from the likes of EDF Renewables, NovoHydrogen, Standard Solar, Bank of America, and more who will give attendees the inside scoop on how to take maximum advantage of this new investment landscape. 

BNEF Summit

New York, New York
April 24 - 25, 2023
Renewable Energy

About the BNEF Summit

The BNEF Summit provides the ideas, insights and connections to formulate successful strategies, capitalize on technological change and shape a cleaner, more competitive future.

Why DG+ is excited about the BNEF Summit

The 2023 BNEF agenda is still being shaped, but based on last year’s event we expect there will be a lot to look forward to. Tracks included ESG & Sustainable Finance, Energy Infrastructure Investment, and Trade & Industry. The 2022 speaker list was very impressive and included representatives from Boundary Stone Partners, the US Department of Energy, Goldman Sachs, Google, BloombergNEF (naturally), and many more. 


New Orleans, Louisiana
May 22-25, 2023
Renewable Energy


CLEANPOWER unites the most knowledgeable minds in the clean energy industry and creates a platform for professionals to discuss the latest industry challenges and opportunities.

Why DG+ is excited about CLEANPOWER

The conference does more than just bring together the different technologies that make up the renewables mix: wind, solar, storage, and transmission. It also unites the various segments within those industries: manufacturers, construction firms, owner-operators, utilities, financial firms, corporate buyers, and more.

And while the feature speaker list for 2023 has yet to be released, the 2022 lineup had some heavy hitters including U.S. Department of Energy Jennifer Granholm and Senator Ron Wyden (D-OR) Chairman, Senate Committee on Finance.


Boston, Massachusetts
June 26 - 28

About GreenFin 23

GreenFin 23 will convene an influential audience of finance, investment, and sustainability professionals to share insights, address key challenges, and showcase leading sustainable financial products and services.

Why DG+ is excited about GreenFin 2023

We’ve said it before and we’ll say it again: this is an electrifying time for sustainable finance and investing. The climate crisis requires substantial changes to the foundations of our economy, and ESG analysis and investing have the potential to shift capital markets toward sustainable outcomes. GreenFin 2023 will bring together investors, asset owners / managers, and forward-thinking companies in order to align corporate and institutional finance with the goals of a clean and just economy. 

The details of the 2023 event are still being finalized, but past speakers from industry leaders such as Salesforce, Robinhood, Blackstone, As You Sow, and Morningstar give us high hopes for a stellar 2023 lineup. 

Electrify Expo

Long Beach, California
June 3 - 5, 2023
Electric Vehicles

About the Electrify Expo

Electrify Expo is North America's largest electric vehicle festival filled with over 1 million square feet of the world's top electric mobility brands. Drive electric vehicles, ride e-bikes, e-motorcycles, e-scooters, e-skateboards + learn what the future of mobility looks like.

Why DG+ is excited for Electrify Expo

The future of mobility is electric, and that includes vehicles of all shapes and sizes. While the entire DG+ team has now been behind the wheel of an electric car (thanks for the Fremont factory tour, Tesla!) we haven’t all ridden an e-skateboard. And because Electrify Expo actually has seven events in North America in 2023, the whole dispersed DG+ just might get a chance to! 

It turns out peak summer isn’t a prime time for cleantech and sustainability events. Perhaps organizers are nudging you to finally take that vacation you’ve been dreaming about. If you work in this industry that means you are actively trying to preserve this incredible planet – so please, go enjoy it. 


Las Vegas, Nevada
September 11 - 14, 2023

About RE+

Hosted by the Solar Energy Industries Association (SEIA) and the Smart Electric Power Alliance (SEPA), RE+ 2023 will be the largest gathering of solar, smart energy, energy storage, and hydrogen fuel cell professionals in North America and offers a unique opportunity for the entire renewable energy industry to collaborate and grow business. Attendees represent all segments of the industry, from installers, manufacturers, developers, utilities, C&I, and more.

Why DG+ is excited about RE+

For starters, we had a blast at RE+ 2022 in Anaheim and we can’t wait to do it again in Vegas. We enjoyed tons of great presentations and panels (one of which featured our very own David Ganske), we walked the showroom floor until we had blisters, we happy hour-ed with clients, we saw a selection of EVs including buses and the new Hummer EV Pickup, and we even got to see some of our own work come to life in the form of client booths and presentations.

The details of this year’s event are still being fleshed out, but based on our experience at the 2022 event we are sure RE+ 2023 is going to be amazing.

LA Auto Show

Los Angeles, California
November 18 - 27, 2023
Electric Vehicles

About the LA Auto Show

Founded in 1907, the Los Angeles Auto Show (LA Auto Show®), is one of the most influential and best-attended auto shows globally and spans more than 1,000,000 square feet. Each fall, show creator ANSA Productions gathers the who’s who of the auto industry to unveil the future of mobility in the car culture capital of the world.

Why DG+ is excited about the LA Auto Show

If you’ve read the rest of this article you’ve likely picked up on the fact that our CEO and founder David Ganske is a huge car guy. And because the LA Car Show is basically in his backyard, it is very safe to bet that you will find him here. (Check out his pictures from last year’s event.)

This show focuses on the future of mobility, which – in case you hadn’t heard – is electric. EVs are not only good for the environment, they are also great for automakers because they are easier to manufacture than internal combustion engine (ICE) vehicles, plus they are great for drivers because they are easier (and cheaper) to maintain. 

It is no surprise that the growing trend of vehicle electrification took center stage at the 2022 show, and we can’t wait to see even more new models in 2023.    

COP 28

United Arab Emirates
November 30 - December 12, 2023

About COP 28

The 28th session of the Conference of the Parties (COP 28) to the UNFCCC (United Nations Climate Change Conference) will take place in the United Arab Emirates. The summit aims to address some of the vital issues surrounding climate change.

Why DG+ is excited about COP 28

Every COP is an occasion to look forward to as the entire purpose of these summits is to solve some of the most pressing climate issues. The 2023 event will similarly carry a lot of environmental expectations and hopefully result in some major resolutions to combat climate change. COP 28’s significance is especially elevated due to where it is being held: the United Arab Emirates (UAE). 

The UAE is one of the world’s biggest oil exporters. Roughly 30% of the country’s GDP comes from oil and gas, and many of its other major industries, including construction and travel, are financially tied to fossil fuels. As most climate-conscious people know, the burning of fossil fuels generates greenhouse gases (GHGs), and GHGs are a major driver of climate change.

While the UAE has laid out a number of “green” initiatives in recent years, the irony of a leading global oil exporter hosting the world’s largest summit addressing climate change is, let’s just say, not something to be ignored.  

Matthew Hedges, an expert on the UAE’s political economy, astutely describes this potential conflict of interests:

“The Emirates is a country with some of the world’s largest oil reserves, with a desire to continue to expand and enhance fossil fuel production. There will be an effort to illustrate their engagement in renewables, particularly solar and nuclear, but there are questions to be asked about how you can engage in such conflicting actions.”

Mark Your Calendar

There are so many awesome clean energy and sustainability events coming up this year that I admit I got a little carried away (I ditched the idea of a “Top 5” list midway through my February research). Even so, there are plenty that I didn’t get to cover above so please see the much more user-friendly chart below to plan your 2023 cleantech event calendar. Oh, and make sure to let us know what events you’ll be attending so we can hopefully meet up! 

January 5 - 8 CES 2023 Las Vegas, Nevada Technology, Energy/Power, Smart Cities, Sustainability, Vehicle Technology
January 18 - 19 Community Solar Power Summit San Diego, California Community Solar, Solar 
January 20 -29 DC Auto Show Washington, DC Electric Vehicles
January 24 - 26 Projects and Money New Orleans, Louisiana Finance
February 7 - 9  DISTRIBUTECH San Diego, California Utilities, Electric Vehicles, Smart Cities, Data Analytics
February 11 - 20 Chicago Auto Show Chicago, Illinois Electric Vehicles
February 14 - 16 GreenBiz 23 Scottsdale, Arizona Sustainability, Circular Economy, ESG, Finance
February 14 - 16 Intersolar North America Long Beach, California Solar, Solar + Storage, EV Charging, Green Hydrogen
March 5 - 8  TechAdvantage Nashville, Tennessee Technology, Energy Services, Electric Cooperative
March 13 - 15 Solar + Wind Finance & Investment Summit Phoenix, Arizona Finance, Investment, Renewables 
March 20 - 21 SEIA’s Finance, Tax & Buyers Seminar New York City, New York Finance, Business, Clean Energy
April 24 - 25 BNEF Summit New York City, New York Renewable Energy, ESG, Sustainable Finance
May 22 - 25 CLEANPOWER 2023 New Orleans, Louisiana Renewable Energy, Utilities, Wind, Solar, Storage, Finance
May 23 - 25 Electric & Hybrid Vehicle Technology Expo Stuttgart, Germany Electric Vehicles, Hybrid Vehicles, Technology
June 3 - 5  Electrify Expo Long Beach, California Vehicle Electrification
June 5 - 7 Circularity Seattle, Washington Circular Economy
June 26 - 28 GreenFin Boston, Massachusetts  Finance, ESG
September 11 - 14 RE+ Las Vegas, Nevada Clean Energy, Solar Energy, Wind Energy, Energy Storage, Microgrids, Electric Vehicles, Hydrogen, Fuel Cells 
October 16 - 19 Sustainable Brands San Diego, California Sustainability
October 24 - 26 VERGE 2023 San Jose, California Climate Tech
November 12 - 15 NARUC’s 2023 Annual Meeting and Education Conference La Quinta, California Utilities 
November 18 - 27 LA Auto Show Los Angeles, California Electric Vehicles, 
November 30 - December 12 COP 28 United Arab Emeriates Sustainability 

Get the latest directly to you inbox.


Let's discuss your next project.

Are you looking for marketing, communications, creative, or research help? Simply fill out this form, and we'll be in touch!


Carbon Capture, Utilization, and Storage - Big Growth Is Promising, But More Is Needed

Gavin Chisholm & Walter James

Key Takeaways: 

  • Today, 65% of carbon capture, utilization, and storage (CCUS) capacity is used to capture emissions from natural gas processing. 
  • By 2030, hydrogen production, power generation, and heat will be the largest sectoral applications for CCUS.
  • CCUS is set to grow globally, with North America and Europe poised for particularly rapid growth over the next decade. 
  • The vast majority of the captured carbon will be stored in permanent storage infrastructure by 2030, outpacing carbon use in enhanced oil recovery.
  • Expected CCUS capacity growth is still not sufficient to meet the IEA’s Net-Zero Emissions Scenario for 2050. Policymakers must enact measures from a wide range of policy and regulatory options available to them to further accelerate CCUS growth.


Driven by ambitious government emissions-reduction targets, a wide range of decarbonization strategies are underway all around the world, from renewable energy production to transportation electrification. Recently, however, a very different decarbonization approach has started to gain traction: carbon capture, utilization, and storage (CCUS). Instead of replacing a polluting product or process with one that does not produce emissions, CCUS technologies remove carbon dioxide (CO2) emitted from power plants and industrial processes, as well as directly from the atmosphere. The captured carbon can be stored (usually injected deep underground) or used for a wide range of applications, including the manufacturing of construction material, fertilizers, and bioplastics.

Despite its growing popularity, CCUS can be a controversial approach to climate change mitigation. Some opponents argue that developing CCUS technologies gives big emitters like fossil fuel companies a convenient excuse to keep extracting fossil fuels. Some observers also argue that relying too heavily on CCUS, rather than accelerating the use of emissions mitigation technologies, will not help the world meet crucial climate targets. 

Despite such skepticism about CCUS, a growing number of governments and firms are deploying CCUS as part of their decarbonization strategies. This is because while the rapid deployment of renewable energy remains the primary strategy for global carbon emission mitigation, even in the most generous of projections, renewables alone will not be enough to meet key climate targets. This is why authoritative projections like those by the Intergovernmental Panel on Climate Change and the International Energy Agency (IEA) also include the use of CCUS technologies.

In this article, we investigate the current state and future projections of the global CCUS landscape: What sectors are employing it, and how is the captured carbon used? How do we expect CCUS deployment to grow in the future? What policies and incentives are necessary for CCUS to reach its potential as a key pillar of a decarbonized society? 

To answer these questions, we analyzed the International Energy Agency’s (IEA) CCUS Projects Database. This database covers all CO2 capture, transport, storage, and utilization projects worldwide that have been commissioned since the 1970s and have an announced capacity of more than 100,000 tons per year (or 1,000 tons per year for direct air capture facilities).

Today’s Global CCUS Market

Natural Gas Processing Dominates Global CCUS Applications Today

For the sake of this analysis,  “sectoral application” refers to the industry in which CCUS is deployed to capture the emitted carbon before it is stored or transported for use. Broadly speaking, there are eight sectoral applications for CCUS technologies today: 

  1. Natural gas processing: CCUS is used to capture carbon emissions from purifying raw natural gas to produce pipeline quality natural gas.
  2. Hydrogen and ammonia production: Hydrogen is a molecule that does not emit carbon when combusted, and has the potential as a clean fuel for the industrial, transport, and power sectors. Ammonia can also be used as a zero-carbon fuel for power generation and a carrier for hydrogen. Yet most hydrogen and ammonia production today uses fossil fuels. CCUS offers a potential solution, as capturing the carbon emitted from hydrogen and ammonia production is a cheaper strategy than using renewable energy to produce these fuels in most regions.
  3. Biofuels: Facilities that produce biofuels like bioethanol, biodiesel, and biogas are also responsible for CO2 emissions, and carbon capture technologies can be used to remove these emissions. 
  4. Other fuel transformation: Carbon capture technology is used to sequester emissions from facilities that produce and refine fuels other than natural gas, hydrogen, ammonia and biofuels.
  5. Iron and steel plants: Some industrial processes, notably iron and steel manufacturing, are highly energy intensive and cannot easily be decarbonized. CCUS is one of the most promising emissions reduction methods for these facilities.
  6. Other industry: CCUS is applied to industrial facilities other than iron and steel, such as aluminum smelters, pulp and paper mills, etc.
  7. Power and heat generation: Power and heat generation account for about 30% of primary greenhouse gas emissions globally. Owners of fossil fuel power plants use CCUS to cut those emissions when power and heat are generated.
  8. Directly from the air: Through direct air capture (DAC), CO2 can be removed directly from the atmosphere.

Hover over graph to interact

As the chart above shows, natural gas processing is the dominant of these eight CCUS applications; today, 65% of all CCUS capacity is in the natural gas processing sector. Natural gas processing plants in North America were the earliest adopters of CCUS in the 1970s and 1980s because of the relatively low cost of capturing carbon from these processes and the ability to supply it to local oil producers for oil recovery operations. 

Over the last two decades, carbon capture capacity in natural gas processing has increased by 265%, from 8.5 megatons (Mt) of CO2 per year in 2000 to over 31 Mt CO2 per year in 2022. This growth follows the steady increase in natural gas production globally. 

Other applications pale in comparison. 7.3 Mt CO2 per year is captured from other fuel transformation processes, 3.5 Mt CO2 from industrial plants other than iron and steel, and 1.6 Mt CO2 from the production of biofuels. The sectors where carbon capture technology will be essential in decarbonization efforts – power generation and heat, as well as iron and steel manufacturing – are still lagging behind at 1.3 and 0.9 Mt CO2 per year, respectively. At 0.004 Mt CO2 per year, DAC capacity is also still in its infancy.

CCUS deployment in sectors other than natural gas processing face a common barrier: the lack of commercial value in capturing CO2. This, combined with the extremely high cost of developing a CCUS project in the absence of substantial and consistent policy support, has made CCUS deployment in industrial applications commercially unattractive. DAC projects are especially costly because the technology is still in its infancy, so there are relatively few companies that develop them. 

Policy Support is Scaling CCUS

To address these common barriers, governments have been proactive in passing and implementing measures to encourage the growth of CCUS projects over the past few years. Here, we highlight several of these policy initiatives in North America and Europe.

In the US, the Inflation Reduction Act (IRA) of 2022 offers a considerable boost for CCUS through a tax credit. This tax credit nearly doubles for carbon that is captured from power and industrial plants, and more than triples for CO2 captured from DAC: $60/tonne for utilization from industrial and power sectors, $85/tonne for storing CO2 captured from industrial and power generation facilities in saline geologic formations, $130/tonne for utilization from DAC, and $180/tonne for storage in saline geologic formations from DAC. 

This support is coupled with funding under the Infrastructure Investment and Jobs Act (IIJA), which provides approximately $12 billion across the CCUS value chain in the form of R&D funding, loans, and permitting support over the next 5 years. These funding measures by the US government are the most ambitious of any country. 

In Canada, the 2022 federal budget included an investment tax credit for CCUS projects that permanently store captured CO2 between 2022 and 2030, valued between 37.5 - 60% of the project cost depending on the type of project. 34 CCUS projects were announced in 2022 and 2023, which will help increase Canada’s CCUS capacity by almost 27 Mt CO2 per year by 2030.

In the European Union, funding programs and regulatory reforms will fuel much of this projected growth, particularly the Connecting Europe Facility - Energy ($6.3 billion between 2021 and 2027) and the Innovation Fund ($41.2 billion between 2020 and 2030) that fund CCUS and other clean energy projects. 

Global Oil and Gas Players Lead the Market

While government policies are pivotal for expanding global CCUS capacity, it is companies that ultimately plan, develop, and operate these projects. This section identifies the major players listed in the IEA CCUS Database and highlights the efforts of some of these companies. 

The table below shows the ten companies involved in the largest CO2 capture capacities and the core sector in which each company operates.

Company Name Headquarters Country Company Sector Announced Avg. Capacity (Mt CO2/yr)
Equinor Norway Oil and gas 134
Fluxys Belgium Oil and gas 76
Shell UK Oil and gas 62.9
Air Liquide France Industrial 51.9
BP UK Oil and gas 41.3
Wintershell DEA Germany Oil and gas 38
Exxonmobil USA Oil and gas 38
Mitsubishi Heavy Industries Japan Industrial 27.3
Open Grid Europe (OGE) Germany Oil and gas 24.2
Denbury USA Oil and gas 21.5

Several patterns can be observed. First is the predominance of oil and gas companies in the CCUS industry. Oil majors including ExxonMobil, Shell, BP, and Equinor are also some of the largest players developing CO2 capture infrastructure. With the recent announcement by ExxonMobil to acquire Denbury to expand its CCUS and enhanced oil recovery (more on this below) capacity, the oil majors in this list are set to consolidate even further. Although not included in the top 10, other US oil companies such as Valero and Chevron are also leading players in this field.

Also notable is the absence of companies that specialize in carbon capture in the top 10. Recently, several firms have garnered attention for their proprietary CCUS technologies, such as CarbFix, CarbonFree, Aker Carbon Capture, and LanzaTech. Yet compared to the multinational energy and manufacturing companies that occupy the top spots in the industry, these pure plays are still small, with total CCUS project capacities of less than 5 Mt CO2 per year each. However, the entry of these specialized companies into the CCUS value chain is encouraging. The IEA notes that the value chain that has historically been dominated by vertically integrated oil and gas companies are starting to break up, allowing new players to innovate and reduce costs in parts of the chain. 

To offer deeper insight into the projects in which these companies are involved, we highlight four companies from the table above.

Equinor is a Norwegian oil and gas company whose portfolio also encompasses renewables and other low-carbon solutions. It is the largest provider of pipeline gas to Europe. 

  • Since 1991, Equinor has been a partner in 23 CCUS projects, totalling an average announced capacity of 134 Mt of CO2 per year.
  • 19 of these projects are still in the planning phase, 2 two are operational, 1 one is under construction and one has been decommissioned. 
  • 8 of these projects capture carbon from hydrogen/ammonia production processes, 8 others are related to CO2 transport and/or storage, and 3 are applied to natural gas processing. 
  • In 20 of the 23 projects, the captured CO2 is stored permanently. 
  • All but one of these projects are located in Europe (including the UK), with the sole exception of one project being in Algeria.

Shell, a British multinational oil and gas company that was formed in 1907, is vertically integrated and is active in every area of the oil and gas industry. 

  • Shell participates in 28 CCUS projects around the world, with a total capacity of 62.9 Mt of CO2 per year. 
  • 23 of these projects are in the planning phase, with the expected operation date ranging from 2024 to 2030. 
  • 3 of the projects are already operational, and 2 are under construction. 
  • These projects’ applications vary widely, from 11 projects dedicated to CO2 transport and/or storage, 6 to hydrogen and ammonia production, 3 to natural gas processing, 3 to other fuel transformation, and the rest applied to power and heat, biofuels, and other industries. 
  • In 22 of these projects, the captured CO2 is put into dedicated storage. 

Air Liquide is a French multinational supplier of industrial gasses and services to a variety of industries, including medical, chemical, and electronic manufacturers. 

  • It is involved in 29 CCUS projects whose average announced capacity totals 51.9 Mt CO2 per year. 
  • 17 of these projects transport the captured CO2, while 6 are in other fuel transformation, 3 are applied to cement manufacturing, 2 are in the iron and steel sectors, and 1 in other industry. 
  • All 29 projects are still in the planning phase, with the expected operation date ranging from 2024 to 2040. 
  • 27 of these projects will be located in Europe, and the rest in the US. 

Mitsubishi Heavy Industries is an industrial and electrical equipment manufacturer headquartered in Japan, whose wide-ranging portfolio includes aerospace and automotive components, air conditioners, utility vehicles, defense equipment and weapons, and power systems. 

  • Mitsubishi is a partner on 17 CCUS projects, totaling 27.3 Mt CO2 per year in average announced capacity. 
  • All 17 are still in the planning phase and will be located mostly in North America and the UK. 
  • Their sectoral applications will be varied, with 5 projects capturing CO2 from hydrogen/ ammonia production processes, 3 from power and heat, 3 from natural gas processing, 3 dedicated to CO2 transport and storage, 2 from cement manufacturing, and the rest from other industries. 
  • The CO2 captured from 11 of the projects will be permanently stored.

2030 Global Projections

The IEA data includes CCUS projects that have been announced as of March 2023, and whose construction and operation are expected in the future. In this section, we use that data to predict developments in the global CCUS landscape between now and 2030, both in terms of the geographic distribution of growth and the different fates of carbon.  

North American and European Policy Will Drive Lead in Regional Capacity Growth 

Growing recognition of the role of CCUS technologies in meeting net zero goals is translating into increased policy support all over the world, which in turn is spurring increased growth in CCUS projects. The predominant forms of policy support are tax credits for projects, funding for R&D, and regulatory reforms. Owing to these measures, over 140 new projects were announced globally in 2022, bringing the global announced CCUS capacity up to 45.8 Mt CO2 per year. This compares to 35.7 Mt CO2 per year in 2017, a 28.3% increase over five years.

Looking ahead to 2030, this growth in CCUS capacity is set to accelerate. We can see this trend in the chart below.

Hover over graph to interact

North America will likely account for the vast majority of the increase in CCUS capacity over the next decade, rising roughly 6x from 27.7 Mt CO2 per year in 2023 to 161.8 Mt CO2 per year in 2030. This capacity expansion is in large part due to the region’s established policies designed to stimulate CCUS market growth. Country-specific analysis reveals that the United States will be the primary policy driver of this acceleration, with Canada playing a secondary but important role. With around 80 projects planned for operation by 2030, the CO2 capture capacity in the US is expected to increase by nearly a factor of five, from over 20 Mt CO2 to over 100 Mt CO2 per year, more than 60% of North America’s expected growth.

Although not as drastically as in North America, Europe is also expecting capacity growth, from 2.5 Mt CO2 per year in 2023 to 95 Mt CO2 in 2030 –  a nearly 40x increase in less than a decade.

Changes in the Fate of Carbon: High Hopes for Dedicated Storage

Rapid CCUS deployment over the next several years will be accompanied by changes in how the captured carbon is used, known as the “fate of carbon.” As of 2022, most of the captured CO2 was used in enhanced oil recovery (EOR), at 39.9 Mt CO2 per year. EOR is the process of extracting oil from an oil field that has already gone through the primary and secondary stages of oil recovery. In other words, the use of CO2 in EOR is a way to rejuvenate oil production at mature oil fields. This explains the fact that large oil producers have been the leading players developing CCUS capacity and the recent renewed interest from many of those same companies. Although CO2-EOR can produce “carbon negative” oil (depending on a variety of factors), it is often not considered a reliable decarbonization strategy. At the same time, the clear commercial value of additional oil production has driven CO2 use in EOR to be the earliest and primary fate of carbon.

Starting in 2023, this is predicted to change: As shown in the chart below, dedicated storage is set for a take-off as the biggest fate of carbon. By 2030, we expect that 426.5 Mt CO2 per year will be put into dedicated storage infrastructure around the world, which is more than a 38-fold increase over eight years. On the other hand, EOR is projected to experience a more modest 1.7x growth.

Hover over graph to interact

Note: The second fastest growing fate of carbon is labeled “Unknown/Unspecified” because the IEA’s CCUS Database is based on publicly available information, and unfortunately many of the project announcements do not make the fate of carbon clear. 

This projected growth in dedicated storage is encouraging. Since more CO2 needs to be sequestered than can be used, much of the captured CO2 needs to be permanently stored. This means that dedicated storage infrastructure is a prerequisite for carbon capture technologies to be deployed. 

Many factors, both market- and policy-driven, are propelling the expansion of carbon storage. A growing number of companies, particularly in the manufacturing and energy sectors, are adopting net-zero targets that carve out a role for CCUS. Another factor is the growing proliferation of CCUS “hubs,” or clusters of infrastructure to capture, transport, store and/or use carbon. These hubs help to improve the economics of and therefore facilitate investments in CCUS projects. In the US, a slew of policy incentives, such as the 45Q tax credit passed in 2018 and those in the IRA and IIJA mentioned above, are boosting investments in CCUS projects. In the EU, the revenue from the Emissions Trading System began funding carbon capture, transportation, and storage projects from 2020. 

The predicted growth of dedicated permanent storage infrastructure is welcome news from a climate perspective: According to the IEA, getting to net-zero emissions by 2050 requires that 95% of captured CO2 be permanently stored. There is more than enough geologic CO2 storage capacity globally to meet climate goals, and the technology for achieving this – such as pipelines for CO2 transportation, mechanisms for injecting, trapping, and monitoring CO2 underground – is well-established. Since CO2 transport and storage infrastructure needs to be operational before CO2 capture projects are developed, this projection is encouraging.

Barriers Remaining for Future CCUS Growth

More Policy Support is Needed to Boost Private Investment and Innovation in CCUS

Including all announced and planned CCUS projects in the IEA CCUS Database, the global CCUS capacity will reach 265.25 Mt CO2 per year by 2030. How does this projected increase compare to the amount of CO2 that needs to be sequestered to reach the IEA’s net-zero scenario? 

Sadly, it falls far short of the target. According to the IEA, to stay aligned with its Net Zero by 2050, CCUS technologies need to capture 1.66 gigatons of CO2 (Gt CO2) per year by 2030 globally, and 7.6 Gt CO2 per year by 2050 to reach net-zero emissions. This means that current and planned capacity of CCUS projects expected in 2030 only accounts for less than 20% of the IEA’s target for 2030. The chart below puts this gap into perspective.

Hover over graph to interact

Given this gap, what more can governments and industry around the world do to rapidly scale up CCUS capacity to meet this target over the next decade? The IEA outlines four high-level priorities:

  1. Creating the conditions that make private investment in CCUS more commercially attractive. Policymakers can achieve this by attaching value on CO2 emissions, providing funding support for capital and operating costs for early projects, and allocating risks across the public and private sectors.
  2. Facilitate the development of CCUS hubs with shared CO2 transport and storage infrastructure. Identifying opportunities for CCUS deployment in specific industrial regions and establishing a business model for carbon transport and storage infrastructure, will go a long way toward this goal.
  3. Identifying CO2 storage. The first step would be to characterize and assess geological CO2 storage around the world. The second is to establish a robust legal and regulatory framework around CO2 storage. Lastly, a concerted campaign to support public awareness will ensure that the general public understands and accepts CO2 storage technology.
  4. Boosting innovation to reduce costs and increase the availability of critical technologies. This can be done through public-private partnerships in R&D and increased funding to revamp innovation in key CCUS applications (especially heavy industry, CO2 use for synthetic fuels, and carbon removal).

The policy support in North America, Europe and elsewhere mentioned above are instances of governments working toward meeting these priorities. But there are additional policy and technological developments that promise to accelerate growth faster than projected in this report. 

The US Environmental Protection Agency recently proposed rules that would require power plants to capture or otherwise reduce their carbon emissions. Technological innovations are taking place in chemical absorption systems that can increase CO2 capture rate. The International CCS Knowledge Centre’s feasibility study found that retrofitting existing power plants with CCUS can be cost-competitive, suggesting that the barriers for power plant operators to build retrofit capture facilities may be lower than we assume today. All of these developments point toward the possibility of more rapid CCUS deployment than the IEA dataset projects. 

Technologies to capture carbon from the atmosphere or from point sources are integral to the net zero roadmap. The key take-away is that the business case for CCUS is getting stronger each year as policymakers and investors support its development as a necessary climate solution. Yet, much more rapid deployment is necessary if we are to meet emissions targets to stabilize the climate by mid-century. As North America and Europe are set to experience accelerated growth in CCUS capacity, they may act as the catalysts for policymakers and project developers in other regions to also scale up their CCUS capabilities. 

Get the market research you need, when you need it.

DG+ is a marketing, creative, and market research agency with a focus on clean energy and sustainable brands. Our team of diverse professionals is a leader in delivering pointed and prompt market insights to industry players. If you’re burnt out on the conventional marketing agency’s lack of understanding of the clean energy industry, struggling to communicate with your market, or on the hunt for new customers, we can provide the market insights you need.

As a small boutique agency, our in-house team of clean energy, sustainability, and cleantech experts have the experience and bandwidth to provide immediate solutions.

  • Policy and Regulatory Analysis
  • Market Strategy and Planning
  • Campaign Strategy and Content Creation
  • Contact List Building

DG+ offers flexible packages to provide customized strategic insights to help your business reach new audiences, develop products and services, and outperform the competition. Contact our team to see how we can craft a project to suit your organization.


Get the latest directly to you inbox.

Experience Where it Matters

Our experience includes work with utilities, solar and wind developers, EV equipment providers, non-profits, international organizations, and more.


Let's discuss your next project.

Are you looking for marketing, communications, creative, or research help? Simply fill out this form, and we'll be in touch!